Service Center Optimization

Songkang DING, Xinchen GUO, Zhifeng HAO,
Qiyuan JIANG, Liqiang LU, Dingguo PU, Jianhua XU,
Xiaohua XUAN, Yuanbiao ZHANG (Presenter)

1.Background

A chinese company has many Service Centers (SC) to acquire new customers and to serve existing customers. SCs income are the commissions given by the company. To manage the SCs effcientely, the company classsify them into 5 levels with their capability (in term of the number of new customers it acquire per year) and the cost (in term of commission rate it can get for one customer from company).

Now the company wants to adjust number of the SCs as well as their levels to decrease its annual cost on SCs.

2.Problems

(1)Can we modify the existing evaluation rules to classfy the Scs more reasonably?
(2)How to predict customer demand next period ?
(3)Based on the result of problem(2), get the optimal number of SCs for each level.
(4)Based on the result of problem(3), get the optimal increasment number of SCs in every service erea?
(5)How to consider the effect of price change on the result of the above problems?

3．Modelling and Algorithms
 （1）Rough Set

पulte ullereit		Level 5	Level 4	Level 3	Level 2	Level 1	各应
Ability	Location	＜＝2	＜＝ 3	＜＝ 3	$<=4$	$<=4$	 商葍 $=4$
	Area	＞$=60$	$>=40$	$>=20$	$>=10$	$>=10$	星受50平方或2个标准客而
	\＃of customers per month	＞$=200$	$>=120$	$>=80$	$>=40$	$>=20$	
	．．．						
	Longterm customers ratio	＞＝60\％					
		［ $50 \%, 60 \%$ ）					
		＜ 50%					
		基桹值					各勍
Custom Value	，＂	2.08	0.8				以揀高平均水平晾低为血娍分基本步长：基権相对度的得分为 0 ．线性得分：
	Customer value	55.83	5.27				
	．．．	70．25\％	6．78\％				
	．．．	18．23\％	6．68\％				
Level Change t	基柽㬈				各洨		
	谈侍时点星閙	3		 			

(2)Expectation of new customers

- Notation
$U_{t}=$ number of the customers at time t
$v_{t}=$ number of the residents
$R_{i n}=$ rate of new customers
$R_{\text {out }}=$ rate of customers lost
$r_{t}=$ increasing rate of residents
$W_{t}=$ number of transient population
$P_{t}=$ percentage of the popullation who are already using the service

$$
S_{t}=\text { market share }
$$

- Model

$$
\begin{aligned}
& U_{t+1}-U_{t}=U_{t}\left(R_{\text {in }}-R_{\text {out }}\right)+\left(V_{t+1} P_{t+1}-V_{t} P_{t}\right) S_{t} \\
& V_{t+1}=V_{t}\left(1+r_{t}\right)+W_{t+1}
\end{aligned}
$$

where

$$
P_{t}=\frac{P_{0}}{P_{0}+\left(1-P_{0}\right) e^{-\lambda t}} \quad: \text { Logistic model }
$$

W_{t+1} can be modeled by AR or Linear Regress

(3)Optimizing the number of SCs with level 1-5

- Notation
- N1, N2, N3, N4, N5: the current number of service centers of level 1-5 (known)
- N^{\prime} : the total number of service centers of competitor(known)
- a1, a2, a3, a4, a5: the capability of service center of level 1-5 (known)
- C1, C2, C3, C4, C5: the unit cost of the capability of service centers of level 1-5 (known)
- [Dmin, Dmax]:the maxim and minimum demands based on the result of problem(2) (which is the expected value of the demand next year)
- $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5$:the optimal number of SCs in the region of level 1-5
- Model

$$
\begin{aligned}
& \operatorname{Min}\left\{\begin{array}{l}
a_{1} C_{1} X_{1}+a_{2} C_{2} X_{2}+a_{3} C_{3} X_{3}+a_{4} C_{4} X_{4}+a_{5} C_{5} X_{5} \\
\sqrt{\left(\frac{X_{1}-N_{1}}{N_{1}}\right)^{2}+\left(\frac{X_{2}-N_{2}}{N_{2}}\right)^{2}+\left(\frac{X_{3}-N_{3}}{N_{3}}\right)^{2}+\left(\frac{X_{4}-N_{4}}{N_{4}}\right)^{2}+\left(\frac{X_{5}-N_{5}}{N_{5}}\right)^{2}} \\
D_{\min }<=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5} X_{5}<=D_{\max } \\
P_{\min } N^{\prime}<=X_{1}+X_{2}+X_{3}+X_{4}+X_{5}<=P_{\max } N^{\prime} \\
X_{1}: X_{2}: X_{3}: X_{4}: X_{5} \approx p_{1}: p_{2}: p_{3}: p_{4}: p_{5}
\end{array}\right.
\end{aligned}
$$

To simplify the model above, set δ as the upper bound of the relative difference of X_{i} and $N_{i}(i=1 \cdots 5)$, the problem can be restated as:

$$
\text { Min } a_{1} C_{1} X_{1}+a_{2} C_{2} X_{2}+a_{3} C_{3} X_{3}+a_{4} C_{4} X_{4}+a_{5} C_{5} X_{5}
$$

$$
\text { S.T. }-\delta \cdot N_{i} \leq X_{i}-N_{i} \leq \delta \cdot N_{i}
$$

$$
D_{\text {min }}<=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5} X_{5}<=D_{\max }
$$

$$
P_{\min } N^{\prime}<=X_{1}+X_{2}+X_{3}+X_{4}+X_{5}<=P_{\max } N^{\prime}
$$

$$
0.8 p_{i} \sum_{\mathrm{i}=1}^{5} X_{i} \leq X_{i} \leq 1.2 p_{i} \sum_{\mathrm{i}=1}^{5} X_{i}
$$

which is a single-objective linear programming problem.
(4) Optimizing the increasing number of SCs in sub-regions with different level

- Notation
- $N_{i j}$:the current number of SCs with level i in subregion $j(i=1, \ldots, 5, j=1, \ldots, S)$ (known)
- B_{j} :the demand of customers in subregion $j(j=1, \ldots, S)$ (known)
- $a_{i,} p_{i}$: the same as in problem(3) (known),
- $J=\left\{j: \sum_{i=1}^{5} N_{i j}<B_{j}\right\}$
- $\quad \Delta N_{i j}$:the optimal increasement number of SCs with level i in subregion $j(i=1, \ldots, 5, j \in J)$
- Model

$$
\begin{aligned}
& \min \sum_{j \in J}\left(\sum_{i=1}^{5}\left(a_{i} N_{i j}+a_{i} \Delta N_{i j}\right)-B_{j}\right), \\
& \sum_{i=1}^{5}\left(a_{i} N_{i j}+a_{i} \Delta N_{i j}\right) \geq B_{j}, j \in J \\
& 0.8 p_{i} \sum_{k=1}^{5} \sum_{j \in J}\left(N_{i j}+\Delta N_{i j}\right) \leq \sum_{i}^{5}\left(N_{i j}+\Delta N_{i j}\right) \leq 1.2 p_{i} \sum_{k=1}^{5} \sum_{j \in J}\left(N_{i j}+\Delta N_{i j}\right) \\
& \Delta N_{i j} \geq 0, j \in J \\
& \Delta N_{i j} \leq \frac{B_{j}}{30}, j \in J \\
& \Delta N_{i j}=0, j \notin J
\end{aligned}
$$

which is equivlent to

$$
\begin{array}{ll}
\text { min } & \sum_{j \in J}\left(\sum_{i=1}^{5} a_{i j} \Delta N_{i j}-B_{j}^{*}\right) \\
\text { S.T. } & \sum_{i=1}^{5} a_{i} \Delta N_{i j} \geq B_{j}^{*}, j \in J \\
& \sum_{j=1}^{s}\left(\Delta N_{i j}-1.2 p_{i} \sum_{k=1}^{5} \Delta N_{k j}\right) \leq 1.2 p_{i} N-N_{i} \\
& \sum_{j=1}^{s}\left(\Delta N_{i j}-0.8 p_{i} \sum_{k=1}^{5} \Delta N_{k j}\right) \geq 0.8 p_{i} N-N_{i} \\
& \Delta N_{i j} \geq 0, j \in J \\
& \Delta N_{i j} \leq \frac{B_{j}}{30}, j \in J \\
& \Delta N_{i j}=0, j \notin J \\
\text { where } & B_{j}^{*}=\sum_{i=1}^{5} a_{i j} N_{i j}-B_{j}
\end{array}
$$

THANK YOU!

